Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory

Identifieur interne : 00DE56 ( Main/Repository ); précédent : 00DE55; suivant : 00DE57

Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory

Auteurs : RBID : Pascal:02-0484284

Descripteurs français

English descriptors

Abstract

Nanoscale heterostructures are generally characterized by local strain variations. Because the atoms in such systems can be irregularly positioned, theroretical models and parameterizations that are restricted to hydrostatic and uniaxial strain are generally not applicable. To address this shortcoming, a method that enables the incorporation of general distortions into the empirical tight binding model is presented. The method shifts the diagonal Hamiltonian matrix elements due to displacements of neighboring atoms from their ideal bulk positions. The new, efficient, and flexible method is developed for zincblende semiconductors and employed to calculate gaps for GaAs and InAs under hydrostatic and uniaxial strain. Where experimental and theoretical data are available our new method compares favorably with other methods, yet it is not restricted to the cases of uniaxial or hydrostatic strain. Because our method handles arbitrary nearest-neighbor displacements it permits the incorporation of diagonal parameter shifts in general, three-dimensional nanoscale electronic structure simulations, such as the nanoelectronic modeling tool (NEMO 3D).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0484284

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory</title>
<author>
<name sortKey="Boykin, Timothy B" uniqKey="Boykin T">Timothy B. Boykin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35899</s1>
<sZ>1 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Klimeck, Gerhard" uniqKey="Klimeck G">Gerhard Klimeck</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Road, MS 169-315, Pasadena, California 91109</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Road, MS 169-315, Pasadena</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bowen, R Chris" uniqKey="Bowen R">R. Chris Bowen</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Road, MS 169-315, Pasadena, California 91109</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Road, MS 169-315, Pasadena</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Oyafuso, Fabiano" uniqKey="Oyafuso F">Fabiano Oyafuso</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Road, MS 169-315, Pasadena, California 91109</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Road, MS 169-315, Pasadena</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0484284</idno>
<date when="2002-09-15">2002-09-15</date>
<idno type="stanalyst">PASCAL 02-0484284 AIP</idno>
<idno type="RBID">Pascal:02-0484284</idno>
<idno type="wicri:Area/Main/Corpus">00E809</idno>
<idno type="wicri:Area/Main/Repository">00DE56</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Measuring methods</term>
<term>Semiconductor quantum dots</term>
<term>Theoretical study</term>
<term>Tight-binding calculations</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7115</term>
<term>7123</term>
<term>Etude théorique</term>
<term>Méthode mesure</term>
<term>Calcul liaison forte</term>
<term>Point quantique semiconducteur</term>
<term>Gallium arséniure</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanoscale heterostructures are generally characterized by local strain variations. Because the atoms in such systems can be irregularly positioned, theroretical models and parameterizations that are restricted to hydrostatic and uniaxial strain are generally not applicable. To address this shortcoming, a method that enables the incorporation of general distortions into the empirical tight binding model is presented. The method shifts the diagonal Hamiltonian matrix elements due to displacements of neighboring atoms from their ideal bulk positions. The new, efficient, and flexible method is developed for zincblende semiconductors and employed to calculate gaps for GaAs and InAs under hydrostatic and uniaxial strain. Where experimental and theoretical data are available our new method compares favorably with other methods, yet it is not restricted to the cases of uniaxial or hydrostatic strain. Because our method handles arbitrary nearest-neighbor displacements it permits the incorporation of diagonal parameter shifts in general, three-dimensional nanoscale electronic structure simulations, such as the nanoelectronic modeling tool (NEMO 3D).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>66</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOYKIN (Timothy B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KLIMECK (Gerhard)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOWEN (R. Chris)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OYAFUSO (Fabiano)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35899</s1>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Road, MS 169-315, Pasadena, California 91109</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>125207-125207-6</s2>
</fA20>
<fA21>
<s1>2002-09-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0484284</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Nanoscale heterostructures are generally characterized by local strain variations. Because the atoms in such systems can be irregularly positioned, theroretical models and parameterizations that are restricted to hydrostatic and uniaxial strain are generally not applicable. To address this shortcoming, a method that enables the incorporation of general distortions into the empirical tight binding model is presented. The method shifts the diagonal Hamiltonian matrix elements due to displacements of neighboring atoms from their ideal bulk positions. The new, efficient, and flexible method is developed for zincblende semiconductors and employed to calculate gaps for GaAs and InAs under hydrostatic and uniaxial strain. Where experimental and theoretical data are available our new method compares favorably with other methods, yet it is not restricted to the cases of uniaxial or hydrostatic strain. Because our method handles arbitrary nearest-neighbor displacements it permits the incorporation of diagonal parameter shifts in general, three-dimensional nanoscale electronic structure simulations, such as the nanoelectronic modeling tool (NEMO 3D).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A23</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7115</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7123</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode mesure</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Measuring methods</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Calcul liaison forte</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Tight-binding calculations</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fN21>
<s1>280</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0240M000622</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00DE56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00DE56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0484284
   |texte=   Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024